首页
首页 >> 通知公告 >> 正文

william威廉亚洲官方学术报告:The differential structure of metric measure space

发布日期:2016/03/30    点击:

报告人:Bang-Xian Han

时间:2016年3月30日下午2:30

地点:7J306微格教室

报告摘要:

In the past ten years, the metric measure spaces with Ricci curvature bound which was proposed by Lott-Sturm-Villani, was studied by researcher from many different areas. In this talk I will introduce some recent results on the differential structure of metric measure spaces, including the non-smooth Sobolev space, Barky-Emery theory, and the notion of tangent/cotangent modules in non-smooth framework. On the metric measure spaces with curvature-dimension condition RCD (K;N), we obtain an improved Bochner inequality and propose a definition of N-dimensional Ricci tensor.

报告人简介:韩邦先,2015.6获得巴黎第九大学博士学位,现为德国波恩大学豪斯多夫数学中心博士后。研究方向:度量几何

欢迎全院师生参加!

上一条:2016年“大众报业杯”山东高校十大优秀学生推荐通知

下一条:william威廉亚洲官方报告:时间模上的半线性脉冲方程的Philos型问题